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similar to that of [10, 2] and is an extension of techniques
that we have previously developed for the stochasticA direct method is presented for determining the uncertainty in

reservoir pressure, flow, and net present value (NPV) using the time- steady-state reservoir flow problem and for a transient
dependent, one phase, two- or three-dimensional equations of flow mass-balance model with uncertain parameters [3–5]. Pre-
through a porous medium. The uncertainty in the solution is mod-

liminary results obtained by this procedure have been pub-elled as a probability distribution function and is computed from
lished in [6, 7].given statistical data for input parameters such as permeability. The

method generates an expansion for the mean of the pressure about The procedure generates an expansion of the mean solu-
a deterministic solution to the system equations using a perturba- tion about a deterministic solution to the system equations
tion to the mean of the input parameters. Hierarchical equations using a perturbation to the mean of the input parameters.that define approximations to the mean solution at each point and

A set of hierarchical equations is obtained for the termsto the field covariance of the pressure are developed and solved
in the expansion of the mean at each point and for the fieldnumerically. The procedure is then used to find the statistics of the

flow and the risked value of the field, defined by the NPV, for a covariance of the solution. Apart from the deterministic
given development scenario. This method involves only one (albeit equation, the hierarchical equations are all linear and can
complicated) solution of the equations and contrasts with the more

be solved sequentially (or, to a large extent, in parallel).usual Monte-Carlo approach where many such solutions are re-
This allows a simple, efficient, numerically stable techniquequired. The procedure is applied easily to other physical systems

modelled by linear or nonlinear partial differential equations with to be developed for computing approximations to the mean
uncertain data. Q 1997 Academic Press to any order required. The method can be applied easily

to other physical systems governed by linear or nonlinear
partial differential equations with stochastic data.

1. INTRODUCTION The technique developed here is closely related to that
of [9, 13, 14, 11]. In these papers the solution is expanded

Difficulty in the mathematical and numerical modelling
about its mean, rather than about a deterministic solution,

of flow through porous media in underground reservoirs
and a set of coupled nonlinear equations for second-order

often arises because precise knowledge of the data is not
approximations to the mean and covariances of the solu-

available. Specifically, reservoir data may only be known
tions is derived. These equations are not as easily solved

within certain limits of accuracy, or it may only be possible
as the hierarchical equations that are established here, and

to specify certain statistical properties of the data. This
they are not as easily extended to obtain higher order

may be due to inaccuracy in measuring equipment or to
approximations.

inaccessibility and a high level of heterogeneity in the res-
The aim of our study is to treat a fairly straightforward

ervoir materials.
two-dimensional model equation for flow through a het-

The usual approach to problems of this kind is to use
erogeneous porous medium (with the implicit assumption

Monte-Carlo methods. However, in some cases the number
that the results obtained may be generalised to the three-

of realisations that need to be generated may be prohibi-
dimensional case). The model is derived by combining

tively large, and for this reason we have aimed to develop
Darcy’s law for flow in a porous medium [8] with the

a more direct method for assessing the uncertainty in the
equation for single-phase flow in a fluid with a constant

solution. The procedure described here uses an approach
compressibility to give

1 Partial support for this research was received from BP Exploration
Operating Co. Ltd. and from the University of Reading Research Endow- c

­p
­t

2 =(k =p) 5 f(r, t), r [ D, (1)
ment Fund.
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and ties in the flow and, more importantly, into the risked value
of the field, as measured by the NPV.

b(p) 5 0, r [ ­D, (2)
2. HIERARCHICAL EQUATIONS FOR

GENERAL OPERATOR
where c is the compressibility, p is the pressure, k is the
permeability, f(r, t) is some forcing function, and b(p) We begin by developing a set of hierarchical equations
is some general linear differential operator representing for a general admissible realisation satisfying a general
either Dirichlet, Neumann, or mixed type boundary condi- nonlinear evolutionary equation. By developing this sys-
tions. The value of the field is assessed using the net present tem of equations as far as possible and then taking mean
value (NPV), defined by values on either side, we obtain equations that allow us to

determine the statistical properties of the solution. In the
next subsection we apply this technique to derive hierarchi-

NPV 5 Ey

0
iQ(t)ie2dt dt, (3) cal equations for the linear model (1)–(2) for pressure in

a reservoir.
We use the notation of MacLaughlin and Wood [13]where Q(t) is the flow at the relevant production well and

throughout. We consider an equation of the general formd is some discounting factor.
In the mathematical modelling of the field for a deter-

ministic case, the flow term Q(t) can easily be obtained if c
­p
­t

2 F (p, u) 5 0, r [ D, (6)
values for the pressure are known or the field flow equa-
tions have been solved at each time-step. For the simple
model used here, the flow is obtained directly from the with boundary conditions
formula

b(p, u) 5 0, r [ ­D, (7)
Q(t) 5 2k=(p), (4)

where
where k is the permeability and p is the pressure.

We make the assumption that the statistical behaviour p 5 p(r, t), u 5 u(r),
of the permeability field can be characterised by its mean
value, kkl, and the permeability autocorrelation function and the scalar operators F and b are constructed from
(PAF), written as a function of two spatial positions, r9 spatial derivatives of the dependent variable p. (The opera-
and r. The PAF is defined explicitly as tor b is assumed to be linear in p and u.)

We describe a realisation u of the data as a perturbation
about u0 5 kul and develop an expansion of the correspond-

r(r9, r) 5
k(k(r9) 2 k0(r9))(k(r) 2 k0(r))l

sk(r9)sk(r)
(5) ing solution p about p0 , the solution to a deterministic

equation which is to be specified. This expansion differs
from that of [13], where a perturbation expansion aboutand can be thought of as a measure of how strongly the
the mean solution kpl is obtained. We let u 5 u0 1 u1 ,statistical properties at points r9 and r are related. For
where ku1l 5 0, and let p 5 oN

m50 pm 1 SN11 , where thepractical applications, the distribution is assumed to be
functions pm(t), m 5 1, 2, ..., N, are to be defined and SN11of a lognormal form. This is a common assumption in
is a remainder term due to the truncation of the series.groundwater modelling, supported by experimental stud-
Substituting the entire series into the model equationies [2].
(6) givesIn the first part of this paper, we deal with cases where

uncertainties in the permeabilities cause corresponding un-
certainties in the solutions for the pressure. We begin by ON

m50
c

­pm

­t
1 c

­SN11

­t
2 F SON

m50
pm 1 SN11 , u0 1 u1D5 0.deriving the hierarchical equations for a general nonlinear

problem, using the same notation as in [13, 14]. The tech-
(8)nique is then applied to the reservoir flow equations and

discrete approximations to the corresponding hierarchical
equations are established. Results for a test problem are Using the same operator notation as in [13] we perform a

Taylor’s expansion of F about (p0 , u0), taking the seriespresented. In the second part of the paper we investigate
how the uncertainties in the data propagate into uncertain- up to second order (N 5 2). We find that
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O2
m50

c
­pm

­t
1 c

­S3

­t
c

­p0

­t
2 F (p0 , u0) 5 0, r [ D, (14)

b(p0 , u0) 5 0, r [ ­D, (15)
2 F (p0 , u0) 2 Fu(p0 , u0)u1 2 Fp(p0 , u0) SO2

m51
pm 1 S3D

and let p1 and p2 be solutions to

2 Fuu(p0 , u0)
u2

1

2
2 Fpu(p0 , u0)u1 SO2

m51
pm 1 S3D (9)

c
­p1

­t
2 Fu(p0 , u0)u1 2 Fp(p0 , u0)p1 5 0, r [ D (16)

2
1
2

Fpp(p0 , u0) SO2
m51

pm 1 S3DSO2
m51

pm 1 S3D bu(p0 , u0)u1 1 bp(p0 , u0)p1 5 0, r [ ­D, (17)

1 R3 5 0, r [ D.
and

Collecting all third-order terms together in T3 , we obtain
c

­p2

­t
2 Fp(p0 , u0)p2 2 Fuu(p0 , u0)

u2
1

2

O2
m50

c
­pm

­t
2 F (p0 , u0) 2 Fpu(p0 , u0)u1 p1

2 Fu(p0 , u0)u1 2 Fp(p0 , u0)(p1 1 p2)
(10)

2
1
2

Fpp(p0 , u0)p1p1 5 0, r [ D, (18)

2 Fuu(p0 , u0)
u2

1

2
2 Fpu(p0 , u0)u1 p1 p2 5 0, r [ ­D. (19)

We can also write down a general equation for pm , where2
1
2

Fpp(p0 , u0)p1p1 1 T3 5 0, r [ D,
m # N, in the form

with boundary conditions
c

­pm

­t
(20)b(p0 , u0) 1 bu(p0 , u0)u1

(11) 2 ON
n51
SOn

i51

­nF

­pi ­un2i

n
(n 2 1)!i! O

o lk5m2n1i
Pi

k51 plk
un2i

1 D5 0,
1 bp(p0 , u0)(p1 1 p2 1 S3) 5 0, r [ ­D.

We note that we can also derive an equation for pm for where the third summation term in Eq. (20) is performed
a general value of N. We find that over all possible values of the indices such that the sum

of lk over k equals m 2 n 1 i. This very complicated term
can be simplified in the case where the operator F is linearON

m50
c

­pm

­t
2 F (p0 , u0) in p, due to the fact that all pressure derivatives of F above

the first are then equal to zero. In this case, the general
equation for pm can be written

2 ON
n51
SOn

i50

­nF

­pi ­un2i

(oN
j51 pj)iun2i

1

(n 2 i)!i! D (12)

1 TN11 5 0, r [ D, c
­pm

­t
2 ON

n51

1
(n 2 1)!

­nF

­p ­un21 pm2n11u
n21
1 5 0. (21)

with boundary conditions
In order to obtain expressions for the mean of p over

all possible realisations of the data, we multiply equation
b(p0 , u0) 1 bu(p0 , u0)u1

(13)
(16) by u1(r9) and p1(r9, t), the values of the first-order
perturbations at the point r9, and use the equality

1 bp(p0 , u0) SON
m51

pm 1 SN11D5 0, r [ ­D.

­

­t
(p1(r9, t)p1(r, t)) 5 p1(r9, t)

­p1(r, t)
­t

1 p1(r, t)
­p1(r9, t)

­t
.

We now define p0 to be the deterministic solution satis-
fying (22)
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Then, taking the mean values of the resulting equations
c

­kpml
­t

2 ON
n51

1
(n 2 1)!

­nF

­p ­un21 kpm2n11u
n21
1 l 5 0, r [ D,and of Eq. (18), we obtain the system

(31)
c

­p0

­t
2 F (p0 , u0) 5 0, r [ D, (23)

and

bp(p0 , u0)kpml 5 0, r [ ­D, (32)c
­ku1(r9)p1(r, t)l

­t

for m $ 2. Evolutionary equations for the cross-correlation2 ku1(r9)Fu(p0 , u0)u1(r)l
terms kpm2n11u

n21
1 l are obtained by the same process as in

2 ku1(r9)Fp(p0 , u0)p1(r, t)l 5 0, (24) the case N 5 2.
It is important to note that the full hierarchical system

c
­kp1(r9, t)p1(r, t)l

­t
of equations for the terms up to mth order in the expansion
of kpl obtained by this process also has a triangular struc-
ture. This is vital in the development of the numerical2 2kp1(r9, t)Fu(p0 , u0)u1(r)l
procedure for computing the mean and covariances of p.

2 2kp1(r9, t)Fp(p0 , u0)p1(r, t)l 5 0, r9, r [ D, (25) It is also important to note here that, apart from the
deterministic equation for p0 , the hierarchical equations
are all linear differential equations. The basic triangularand
structure of the system therefore allows all the unknown
terms to be computed, in principle, by the application of
a nonlinear solver to the deterministic equation, followedc

­kp2l
­t

2 Fp(p0 , u0)kp2l 2 Fuu(p0 , u0)
ku2

1l
2

(26)
by the application of a basic linear solver to each of the
remaining hierarchical equations, up to the approximation

2 Fpu(p0 , u0)ku1p1l 2
1
2

Fpp(p0 , u0)kp1p1l 5 0, r [ D, order required. It is assumed that a method for solving the
deterministic problem is already available, and thus, the
only extra work involved in determining the stochastic

with boundary conditions, mean and covariances arises in the solution of the higher-
order linear equations.

We next consider the application of this procedure tob(p0 , u0) 5 0, r [ ­D, (27)
the model problem (1)–(2) for flow in a porous medium,
where the differential operator is linear in p.ku1(r9)bu(p0 , u0)u1(r)l 1 ku1(r9)bp(p0 , u0)p1(r, t)l 5 0,

r9 [ D, r [ ­D, (28)
3. HIERARCHICAL EQUATIONS FOR POROUS

FLOW PROBLEMkp1(r9, t)bu(p0 , u0)u1(r)l 1 kp1(r9, t)bp(p0 , u0)p1(r, t)l 5 0,

We now apply the theory developed in the previousr9 [ D, r [ ­D, (29)
section to the model problem (1)–(2). If the permeability
is assumed to have a symmetric probability distribution,

and then we take u ; k and let the operator have the form

bp(p0 , u0)kp2l 5 0, r [ ­D. (30) F (p, k) 5 =k =p. (33)

In practice we assume that the permeability has a lognor-Solving Eqs. (23)–(30) then gives a second-order approxi-
mal distribution, which is the common form for a porousmation to kpl 5 p0 1 kp2l 1 kS3l. The system equations
medium [2, 12]. We take u ; z, where ln(k) 5 z 5 z0 1are triangular and can be solved sequentially. We note
z1 and let the operator be given bythat Eqs. (24)–(25) with boundary conditions (28)–(29)

are linear and can, in fact, be solved in parallel for different
F (p, z) 5 =ez =p. (34)values of r9.

In order to find the equations up to a general mth-order
term, we take mean values on either side of Eq. (20). For In this case we expand the permeability about the geo-

metric mean. Then ln(k) 5 z0 1 z1 , where z0 5 kzl, impliesthe case where the operator is linear in p, we obtain



DIRECT COMPUTATION OF STOCHASTIC FLOW 207

k 5 ez0 1 z1ez0 1
z2

1

2
ez0 1 ? ? ?

(35)
2 Oy

j5N11
ON
m50

=kj2m =pm 5 0. (43)

5 kg 1 k1 1 k2 1 ? ? ? 5 kg 1 Oy
j51

kj ,
Taking mean values on either side of these equations

and performing the same procedure on Eq. (39) as in
Section 2 (with N 5 2), we obtain, up to second order, thewhere kg is the geometric mean.
hierarchical systemIf we perform the same procedure as in Section 2 and

assume that the pressure has the form

c
­p0

­t
2 =kg =p0 5 f0 (44)

p 5 ON
m50

pm 1 SN11 , (36)

c
­kk1(r9)p1(r, t)l

­t
2 =kg(r) =kk1(r9)p1(r, t)l

then substituting for pressure and permeability into Eq.
2 =kk1(r9)k1(r)l =p0(r, t) 5 kk1(r9) f1(r)l, (45)(1) gives

c
­kp2l

­t
2 =kg =kp2l 2 =kk1 =p1l 2 =kk2l =p0 5 0, (46)

c
­

­t SONm50
pm 1 SN11D

(37) where

2 = Skg 1 Oy
j51

kjD = SON
m50

pm 1 SN11D5 f(r, t).
r9 [ D, r [ D,

with the boundary conditionsWriting

b(p0(r, t)) 5 0, (47)f(r, t) 5 f0(r, t) 1 f1(r, t),
bp(p0)kk1(r9)p1(r, t)l 5 0, (48)

where f0 5 k f(r, t)l and f1 is a perturbation with mean
bp(p0)kp2(r, t)l 5 0, (49)value equal to zero, we obtain the system of hierarchical

equations
where

r9 [ D, r [ ­D.c
­p0

­t
2 =kg =p0 5 f0 , (38)

We may also obtain a second-order approximation to
c

­p1

­t
2 =kg =p1 2 =k1 =p0 5 f1 , (39) the covariance as in the previous section by considering

c
­p2

­t
2 =kg =p2 2 =k1 =p1 2 =k2 =p0 5 0, (40) c

­

­t
(p1(r9, t)p1(r, t))

(50)
?
? 5 p1(r9, t)c

­p1(r, t)
­t

1 p1(r, t)c
­p1(r9, t)

­t?

c
­pj

­t
2 =kg =pj 2 Oj21

m50
=kj2m =pm 5 0, (41) and substituting for c(­p1/­t), etc. from (39) to obtain

? c
­

­t
(p1(r9, t)p1(r, t))?

?

2 =2kg(r) =2p1(r9, t)p1(r, t)
c

­pN

­t
2 =kg =pN 2 ON21

m50
=kN2m =pm 5 0, (42)

2 =2k1(r)p1(r9, t) =2p0(r, t)
(51)

2 =1kg(r9) =1p1(r, t)p1(r9, t)
c

­SN11

­t
2 =kg =SN11 2 = SOy

j51
kjD =SN11

2 =1k1(r9)p1(r, t) =1p0(r9, t) 5 0,



208 DAINTON, GOLDWATER, AND NICHOLS

where =1 and =2 denote the grad with respect to r9 and r, 4. DISCRETISATION
respectively. Taking the mean value on either side of this

We now show that the problem of treating kk1 =p1lequation results in an equation for the behaviour of the
numerically may be overcome by discretising the hierarchi-covariance of the pressure given by
cal equations derived in Section 3 in an appropriate way.

c
­

­t
(kp1(r9, t)p1(r, t)l) 4.1. General Form of the Discrete Equations

We use a simple explicit time scheme and a general
2 =2kg(r, t) =2kp1(r9, t)p1(r, t)l (unspecified) spatial difference scheme of the form
2 =2kk1(r)p1(r9, t)l =2p0(r, t)

(52)

2 =1kg(r9) =1kp1(r, t)p1(r9, t)l cpn11
0 ij 2 cpn

0 ij

Dt
2 =h(k g

ij =h pn
0 ij) 5 f̃ n

0 ij ,
2 =1kk1(r9)p1(r, t)l =1p0(r9, t) 5 0.

where the term f̃ n
0 ij includes implicitly both the forcingIf the covariance at time t between pressure values at

function f from the analytic equations and the associatedtwo points, r9 and r, is denoted by C(r9, r, t), then these
boundary conditions at points adjacent to or on theequations are
boundary.

We discretise Eqs. (39) and (40) correspondingly and
then multiply the discretisation of Eq. (39) at the grid pointc

­

­t
(C(r9, r, t))

(i, j) by the value of k1 at some other grid point (i9, j9).
Taking the mean value on either side of the resultant equa-2 =2kg(r, t) =2C(r9, r, t)
tions gives the hierarchical set of discrete equations

2 =2kk1(r)p1(r9, t)l =2p0(r, t)
(53)

2 =1kg(r9) =1C(r, r9, t) cpn11
0 ij 2 cpn

0 ij

Dt
2 =h(k g

ij =h pn
0 ij) 5 f̃ n

0 ij , (55)
2 =1kk1(r9)p1(r, t)l =1p0(r9, t) 5 0,

ckk 1
i9j9pn11

1 ij l 2 ckk 1
i9j9pn

1 ijl
Dtwith the boundary conditions,

2 =h(k g
ij =hkk 1

i9j9pn
1 ijl)bp(p0)C(r9, r, t) 5 0, r9 [ D, r [ ­D, (54)

2 =h(kk 1
i9j9k

1
ijl =h pn

0 ij) 5 kk 1
i9j9 f̃ n

1 ijl, (56)
In summary, the solutions to Eqs. (44), (45), (46), and

(53) with boundary conditions (47)–(49) and (54) define ckpn11
2 ij l 2 ckpn

2 ijl
Dta second-order approximation to the mean and covariance

of the pressure p. In order to solve these equations numeri-
2 =h(k g

ij =hkpn
2 ijl) 2 =h(kk 1

ij =h pn
1 ijl)cally, the cross-correlation term, =kk1 =p1l, in Eq. (45)

must be treated with special care. In the next section we
2 =h(kk 2

ijl =h pn
0 ij) 5 0, (57)

discuss a suitable scheme for discretising the hierarchical
equations.

where the indices (i, j) refer to spatial points (i Dx, j Dy)Higher order approximations can be obtained by solving
in Cartesian coordinates, and pn

m ij refers to the numericalthe hierarchical system for higher order terms, kpml, m 5
solution for pm(r, n Dt), where r is also in Cartesian coordi-3, 4, ..., N, in the expansion of kpl. The accuracy of the
nates.approximation is determined by the truncation error SN11 .

The same discretisation performed on the covarianceIt is possible that bounds can be obtained on the size of
equation (53) results in the equationsthis remainder term over all admissible realizations. In

[4, 5] an analysis of the truncation error is given for the
steady-state problem and bounds are derived in terms of cCn11

i9j9ij 2 cCn
i9j9ij

Dt
bounds on the range of possible values for the permeability.
This effectively gives a measure of the accuracy of the
hierarchical approximations in the limit as the system tends 2 =hk g

ij =hC
n

i9j9ij 2 =hkk 1p1l
n

i9j9ij =h pn
0 ij

(58)

to steady-state. It is expected that this analysis can be
2 =hk g

i9j9 =hCn
iji9j9 2 =hkk 1p1ln

iji9j9 =h pn
0 i9j9 5 0.extended to the transient case.
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The quantity of particular interest is the variance of the ckpn11
2 ij l 2 ckpn

2 ijl
Dt

1
(kg

i11j 1 kg
ij)

2 Dx2 kpn
2 i11jl 1

(kg
i21j 1 kg

ij)
2 Dx2 kpn

2 i21jlpressure distribution, an important characterisation of
the complete distribution function. In discretised form, the
variance for time level n Dt, at spatial position (i Dx, j Dy) 1

(kg
ij11 1 kg

ij)
2 Dy2 kpn

2 ij11l 1
(kg

ij21 1 kg
ij)

2 Dy2 kpn
2 ij21l

is the value of Cn
ijij . Unfortunately, in the process of solving

for this value, the correlation values for distinct points,
2 H(kg

i11j 1 kg
i21j 1 2kg

ij)
2 Dx2 1

(kg
ij11 1 kg

ij21 1 2kg
ij)

2 Dy2 J kpn
2 ijlCn

i9j9ij must also be computed and stored at each time level.
These values can be considered as a bonus to the required
information, having an academic rather than a practical

1
(kk1p1ln

i11ji11j 1 kk1p1ln
iji11j)

2 Dx2 1
(kk1p1ln

i21ji21j 1 kk1p1ln
iji21j)

2 Dx2interest. An indication of the correlation length of the
solution variable is, however, now directly available
through this technique. 1

(kk1p1ln
ij11ij11 1 kk1p1ln

ijij11)
2 Dy2 1

(kk1p1ln
ij21ij21 1 kk1p1ln

ijij21)
2 Dy2

(60)
We now have a complete set of coupled numerical equa-

tions for approximating the first two moments of the proba-
2

(kk1p1ln
i11jij 1 kk1p1ln

i21jij 1 2kk1p1ln
ijij)

2 Dx2bility distribution of the pressure up to second order. The
boundary conditions are incorporated into the right-hand
side terms of the equations. (Higher order approximations

2
(kk1p1ln

ij11ij 1 kk1p1ln
ij21ij 1 2kk1p1ln

ijij)
2 Dy2can be obtained by discretising the higher order equations

in the full hierarchical system.) When these equations are
solved simultaneously, the cross-correlation terms are 1

(k2
i11j 1 k2

ij)
2 Dx2 pn

0 i11j 1
(k2

i21j 1 k2
ij)

2 Dx2 pn
0 i21j

found from the linear equation (56) and then substituted
into Eq. (57). It is important to note that in order to obtain

1
(k2

ij11 1 k2
ij)

2 Dy2 pn
0 ij11 1

(k2
ij21 1 k2

ij)
2 Dy2 pn

0 ij21the correct spatial discretisation of (57), it is necessary to
discretise the term =h(kk 1

ij =h pn
1 ijl) in Eq. (57) first and then

to substitute the solutions kk 1
i9j9pn

1 ijl to Eqs. (56) into the 2 H(k2
i11j 1 k2

i21j 1 2k2
ij)

2 Dx2 1
(k2

ij11 1 k2
ij21 1 2k2

ij)
2 Dy2 J pn

0 ij 5 0.
resulting numerical expressions. In the next subsection we
describe a specific spatial discretisation that gives a stable,
second-order numerical scheme. Provided that the pressure is specified as a deterministic

function of time at one point in the region or on its bound-
4.2. Spatial Discretization ary, it can be shown that the complete numerical scheme

is stable if the conditionWe now describe a specific spatial discretisation of the
hierarchical equations.

We consider a simple explicit five-point difference 4 Dt kg

ch2 , 1 (61)
scheme, where the value of the permeability at points half-
way between adjacent gridpoints (i, j) and (i 6 1, j) or
(i, j 6 1) is always approximated by an average of the two holds, where h 5 Dx 5 Dy. In practice the pressure at a
values at the grid-points. Equation (55) at an interior grid well site is controlled and, therefore, the assumption that
point in this case becomes the pressure is specified deterministically at some point is

a natural constraint on the system.
If the pressure is not specified as a deterministic functioncpn11

0 ij 2 cpn
0 ij

Dt
1

(kg
i11j 1 kg

ij)
2 Dx2 pn

0 i11j 1
(kg

i21j 1 kg
ij)

2 Dx2 pn
0 i21j at some point in the region or on its boundary (i.e., purely

Neumann boundary conditions are specified), then the ap-
proximation to the deterministic equation for p0 is stable1

(kg
ij11 1 kg

ij)
2 Dy2 pn

0 ij11 1
kg

ij21 1 kg
ij)

2 Dy2 pn
0 ij21 (59)

under the condition (61), but the numerical scheme for the
complete hierarchical equations is unconditionally unstable
and errors are expected to propagate with a polynomial2 H(kg

i11j 1 kg
i21j 1 2kg

ij)
2 Dx2 1

(kg
ij11 1 kg

ij21 1 2kg
ij)

2 Dy2 J pn
0 ij 5 f n

0 ij .
growth rate.

Equations (56)–(58) are discretised similarly. The term 5. APPLICATION
=h(kk 1

ij =h pn
1 ijl) in Eq. (57) is approximated using the com-

puted solutions kk 1
i9j9pn

1 ijl to (56) at points (i9, j9) adjacent In this section we present examples illustrating the re-
sults obtained by this method for the full statisticalto the discretisation point (i, j). The complete discrete form

of equation (57) is given by problem.
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TABLE I5.1. Test Problem

Numerical Solution for p0 with Isotropic Correlation LengthsWe consider the system equations (1)–(2) on a square
of unit length with centre at (0.5, 0.5). We assume the

N p0(a) p0(b) p0(c) p0(d)
parameter c is deterministic with unit value and the forcing
function f is deterministic and identically zero; that is, c 5 4 0.16 20.18 20.18 0.16

8 0.22 20.22 20.22 0.221, and f ; 0. No flow conditions are assumed around the
12 0.24 20.25 20.25 0.24boundary. It follows that
16 0.26 20.26 20.26 0.26
18 0.26 20.26 20.26 0.26

b(p) 5 ­p/­n, bp(p0)(?) 5 ­(?)/­n.
Note. kg 5 0.2, sz 5 0.10, Dt/h2 5 0.648, and h 5 1/N.

A single Fourier mode is taken as the initial condition for
the pressure, and the initial values for the mean and vari-

this test function as it is a straightforward solution withance of the pressure are zero throughout the region (equiv-
well-known deterministic behaviour.alent to a deterministic initial condition). The pressure at

In the experiments presented here, the values for thethe centre of the region is assumed to be deterministic and
geometric mean of the permeability and for the varianceis held fixed at a value of zero for all time; the higher
of the log of the permeability, z ; ln(k), are taken to bemoments are, thus, also zero at this point for all time.
constants, kg ; ekzl 5 0.2 and sz 5 0.1, respectively. TheThe boundary conditions for each realization are given
PAF of the log of the permeability is given byexplicitly by

r(x, y, x9, y9) 5 exp S2Sf
2

(x 2 x9)
lx

D2D exp S2Sf
2

(y 2 y9)
ly

D2D .­pm

­n
5 0, x [ [0, 1], y 5 0, 1

­pm

­n
5 0, y [ [0, 1], x 5 0, 1,

(63)

Both the isotropic case where lx 5 ly , and the anisotropic
case, lx ? ly , are considered.together with the conditions

5.2. Resultspm(x, y, t) 5 0, at x 5 0.5, y 5 0.5,

In Tables I–III we present a brief summary of results
and the initial conditions are given by demonstrating the convergence of the computational

scheme. The numerical solutions of the deterministic pres-
sure, the corrected value to the pressure mean and thep0(x, y, 0) 5 cos(fx), x, y [ [0, 1],

pm(x, y, 0) 5 0, x, y [ [0, 1], covariance are shown at four different points in the reser-
voir after a time of t 5 1.0. The points are labelled a, b,
c, and d, where a 5 (0.25, 0.25), b 5 (0.75, 0.25), c 5 (0.75,

for m 5 0, 1, 2, ... . 0.75), and d 5 (0.25, 0.75). In these tests we let e 5 Dt/h2 5
All lengths and times are normalised. It is assumed here 0.648 remain constant as h 5 1/N converges to 0. The tables

that one unit of length corresponds to one kilometre. If indicate that the full numerical hierarchical equations are
one unit of time is taken to represent 10 years, then one convergent and that about three figures of accuracy can
pressure unit corresponds to 450 psi.

Using a single Fourier mode as the initial condition im-
TABLE IIplies that in the case of a homogeneous geometric mean

value, kg , for the permeability, the solution to the deter- Numerical Solution for p2 with Isotropic Correlation Lengths
ministic equation (55) may be expressed as the Fourier

N p2(a) p2(b) p2(c) p2(d)mode

4 4.05 3 1022 4.32 3 1022 4.23 3 1022 4.20 3 1022

p0(x, y, t) 5 e2f2(kg/c)t cos(fx) (62) 8 3.64 3 1022 4.09 3 1022 4.04 3 1022 3.86 3 1022

12 3.47 3 1022 3.95 3 1022 3.99 3 1022 3.72 3 1022

16 3.42 3 1022 3.87 3 1022 3.92 3 1022 3.66 3 1022

with an exponentially decaying amplitude. It is fairly trivial 18 3.44 3 1022 3.90 3 1022 3.91 3 1022 3.69 3 1022

to show by substitution that (62) is a solution to the model
equation satisfying the boundary conditions. We choose Note. kg 5 0.2, sz 5 0.10, Dt/h2 5 0.648, and h 5 1/N.
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TABLE III

Numerical Solution for Covp with Isotropic
Correlation Lengths

N Covp(a) Covp(b) Covp(a) Covp(d)

4 2.85 3 1024 2.80 3 1024 3.43 3 1024 3.59 3 1024

8 3.02 3 1024 3.08 3 1024 3.71 3 1024 3.82 3 1024

12 3.18 3 1024 3.21 3 1024 3.86 3 1024 3.91 3 1024

16 3.24 3 1024 3.27 3 1024 3.91 3 1024 4.01 3 1024

18 3.25 3 1024 3.27 3 1024 3.92 3 1024 4.03 3 1024

Note. kg 5 0.2, sz 5 0.10, Dt/h2 5 0.648, and h 5 1/N.

FIG. 2. Deterministic solution for pressure at t 5 1.0.be expected with a value of N 5 18. Additional studies
relating to the stability of the scheme show also that with
this value of N, the solution is not significantly improved

correction to the deterministic solution and for the vari-by taking any smaller values of Dt.
ance, respectively, after time interval t 5 1.0. Figures 9In Figs. 1–10 the solutions to the hierarchical equations
and 10 show plots for the same values at t 5 1.0, butcomputed with h 5 akA and Dt 5 gA;; are shown. The data is
with anisotropic correlation lengths reversed, so that lx 5defined in Section 5.1. Experiments have also been carried
1.0 and ly 5 0.1.out with different choices for the mean and the variance

of the probability distribution of the permeability and for
5.3. Discussiondifferent time intervals.

In Figs. 1 and 2, we show the evolution of the determinis-
The deterministic solution behaves as expected, de-tic pressure solution, first at time t 5 0.1 and then at the

caying exponentially whilst retaining the basic shape of thefinal time value t 5 1.0. Figures 3 and 4 then show the
(one-dimensional) mode. The numerical amplitude at timecorrection for the mean at these two times and Figs. 5
t 5 1.0 is 0.140, compared to the analytic value ofand 6 demonstrate the values of the variance at the same
e2f2

30.2 5 0.139.time points.
We can see in Figs. 3–6 how the statistical momentsThe next set of four figures shows the case where the

grow from very low values, close to zero at the initialcorrelation lengths are anisotropic. Figures 7 and 8 show
time to more significant values at the final time. This isplots at the final time, where the correlation length is
to be expected as the initial conditions are assumed toshort in the x-direction, and long in the y-direction, with
be deterministic and the statistical moments are zero at

lx 5 0.1 and ly 5 1.0. The plots are for the mean
t 5 0.

The variance is seen to reach a maximum at around t 5
0.5, thereafter gradually decreasing, with the maximum
concentrating in the corners as it decays.

FIG. 3. Mean correction to the deterministic pressure at t 5 0.1.FIG. 1. Deterministic solution for pressure at t 5 0.1.
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FIG. 4. Mean correction to the deterministic pressure at t 5 1.0.

FIG. 6. Pressure variance at t 5 1.0.

In comparison with experiments using a higher mean
value, we observe a slower decay rate; for example,

6. TREATMENT OF THE FLUID FLOW AND NPV
when kg 5 0.1, the numerical decay rate is halved. The
general shape assumed by the approximations to the 6.1. Fluid Flow
mean and variance of p after one time unit are the

The equation for flow in a porous medium can be ob-same. The numerical value of the variance is, however,
tained from the pressure in the fluid using Darcy’s law,higher due to a greater relative spread in admissible reali-
which is given in simplest form bysations.

In the case of strong correlation in the y-direction,
Q 5 2k =p. (64)and much less correlation in the x-direction, we find that

the statistical properties throughout the region are more
In the case of a lognormal probability distribution wehomogeneous in themselves than in the case where the

may substitute the perturbation expansion (35) for thestrong correlation is in the x-direction, and there are
permeability into Eq. (64). Assuming, as previously, thatmuch higher variances concentrated in the corners. In
the pressure may be approximated by a truncated seriesthe case where we consider small isotropic correlation
of form (36), we findlengths in both directions we observe a similar concentra-

tion of variance in the corners, with numerical values
Q Q 2(kg 1 k1 1 k2) =(p0 1 p1 1 p2), (65)of one order of magnitude lower, which is the type of

behaviour we expect if the statistical properties are
where all terms up to and including second order haveweakly correlated.
been retained.

FIG. 7. Mean correction for anisotropic correlation lengths at t 5 1.0.FIG. 5. Pressure variance t 5 0.1.
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FIG. 8. Pressure variance for anisotropic correlation lengths at t 5 1.0. FIG. 10. Pressure variance for anisotropic correlation lengths at
t 5 1.0.

If we now take mean values on either side, then, since
kp1l 5 0, we obtain a vector expression for the mean value Qij 5 2kij =h pij . (68)
of the flow given by

The equation for the mean value of the flow then takeskQl Q 2kg =p0 2 (kk1 =p1l 1 kk2l =p0 1 kg =kp2l). (66)
the form

The covariance of the flow may be written
kQijl Q 2k g

ij =h p0
ij 2 (kk 1

ij =h p1
ijl 1 kk 2

ijl =h p0
ij 1 k g

ij =kp2
ijl),

(69)Covq Q kk1k1l(=p0)2 1 2kg =p0 ? kk1 =p1l

1 (kg)2k(=p1) ? (=p1)l.
(67)

and the equivalent covariance term is
Using the computational results obtained by the meth-

ods described in the previous sections, we can now compute
the first two statistical moments for the flow. These only

Covqij
Q kk 1

ijk
1
ijl(=h p0

ij)2 1 2k g
ij =h p0

ij ? kk 1
ij =h p1

ijl

1 (k g
ij)2k(=h p1

ij) ? (=h p1
ij)l.

(70)
require statistical information for the pressure which is
already available. Both these terms can then be used to
calculate the mean of the net present value and its statistical

These discretised forms for the statistical moments ofmoments up to second order.
the flow are used to calculate numerical approximations toIt is fairly straightforward to approximate Eq. (64) with
the NPV. In the case of a standard probability distributiona central difference approximation so that the flow at the
function for the permeability, similar results can be de-point (i Dx, j Dy) can be written
rived.

6.2. Net Present Value

To assess the net present value of the systems we are
considering, we must treat the NPV as a time-dependent
variable; that is, we define

NPV(t) 5 Et

0
iQie2ds ds, (71)

where Q is the flow at a specified position, and let t R y.
Here i?i denotes the L2 vector norm and d is the discount
factor. The mean value of the NPV can then be shown to be

kNPVl Q Et

0
ikQijlie2ds ds, (72)

FIG. 9. Mean correction for anisotropic correlation lengths at t 5 1.0.
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FIG. 12. Approximation of variance of NPVs for various s 2
z .FIG. 11. Evolution of means of NPV for various s 2

z .

case of a homogeneous geometric mean value for the per-
to second-order accuracy, and an approximation to the meability, the deterministic solution to Eq. (1) is given by
second moment may be written as Eq. (62).

We observe the values for the NPV over the time interval
[0, 2] determined by the flow at the centre of the region.kNPV2l Q Et

0
k(Qij 2 kQijl)2le2ds ds ; Et

0
Covqij

e2ds ds. (73)
At this point the pressure p is deterministic and is held
constant for all times t. These conditions correspond to

We are chiefly interested in how the mean value of the those that hold at a well site. Figure 11 shows the various
NPV compares with the deterministic solution, obtained mean values for the NPV with different permeability
by operating the numerical process on the mean value of variances, compared with the deterministic solution. The
the permeability field to give homogeneous geometric mean value of the permeability

is kg 5 0.2. In Fig. 12 the corresponding relative variances
NP̃V 5 Et

0
iQ̃ie2ds ds, are shown for the NPV for the same permeability vari-(74)

ances.

where

Q̃ 5 2k g
ij =h p0

ij . (75)

6.3. Results

We now give examples of risked values of a field that
have been computed by the methods described here for
finding the low order moments of the probability distribu-
tion function of the NPV. We take the same data as in
Section 5.1 for the test problem. The discount factor is
taken to be d 5 1.0. Integrals are computed using the
trapezoidal quadrature rule with time step Dt 5 aA;; .

As before, we consider a single Fourier mode as the
initial pressure condition in the reservoir, with no flow
conditions around the boundary and zero forcing function.
The region under investigation is a square of unit length,
and all lengths and times are normalised. Using the single

FIG. 13. Means of NPV for small kg for various s 2
z .Fourier mode as the initial condition means that, in the



DIRECT COMPUTATION OF STOCHASTIC FLOW 215

moments of the stochastic variables. The feasibility of this
approach is demonstrated for a simple example of one
phase flow in a two dimensional reservoir where the perme-
ability field is characterised by its mean value and autocor-
relation function and is assumed to be of lognormal form.
Simple explicit finite difference schemes are used to ap-
proximate the pressure and flow equations. Second-order
approximations to the mean and variance of the pressure
field are calculated and the risked value of the field is
estimated for various statistical descriptions of the perme-
ability field. The results indicate that the estimated mean
of the NPV varies significantly with the variance of the
permeability field.

These results demonstrate that the direct approach de-
scribed here can be used effectively to assess the potential
of reservoirs with uncertain data. Further studies are
needed to improve the efficiency and range of applicability

FIG. 14. Means of NPVs for large kg for various s 2
z . of the process. The limitations imposed by the stability

conditions can easily be removed by applying implicit dif-
ference schemes to obtain the numerical approximations.
Efficiency could be improved by reducing the computationIn Fig. 13, we show the equivalent plots in the case of
of the cross-correlation terms only to those making signifi-a smaller permeability mean. Here, kg 5 0.1. In Fig. 14,
cant contributions to the moments.we show the plots of the mean of the NPV for a larger

The approach presented here is being extended to uncer-mean permeability field with kg 5 0.4.
tain nonlinear multiphase flow problems. In these casesIn Fig. 11 we can see that the mean values for the NPVs
the method is expected to be particularly competitive, be-corresponding to the smaller values of the permeability
cause the equations for the higher moments are linear andfield seem to converge to a similar order of magnitude,
can be solved rapidly and efficiently, in contrast to Monte-but to a significantly different value from the deterministic
Carlo methods, which require repeated solution of the fullsolution (sz 5 0.0). The value for the case where the covari-
nonlinear models. The procedure can also be applied toance of the permeability field is large with respect to its
other physical systems modelled by partial differentialmean seems not to show convergence over the specified
equations with uncertain data.time period.

This effect is repeated in Figs. 13 and 14, with significant
convergence being shown in Fig. 14, where the mean is
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